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The flow between corotating compressor or turbine discs and the flow between a turbine 
disc and an adjacent stationary casing can be respectively modelled by a rotating cavity 
and by a rotor-stator system. This paper reviews some of the recent experimental and 
theoretical work on flow and heat transfer in these two classes of rotating-disc systems. 
Comparisons between the theoretical and measured distributions of velocity, pressure, 
and Nusselt numbers are made for the rotating cavity with a superimposed radial flow of 
cooling air. For the rotor-stator system, some recent work on the fluid dynamics is outlined, 
and particular mention is made of the so-called “ingress problem” and of the use of 
pre-swirl air to improve the blade-cooling effectiveness. 
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Introduction 

In modern industrial gas turbines and aero-engines, a small 
percentage of the compressed air is bled off for cooling and 
sealing purposes. Some of the air is used for cooling the turbine 
blades and nozzle guide vanes, and part of it is employed in 
cooling and sealing the turbine discs. It is the latter application 
that is the subject of this paper. 

Figure 1 shows simplified diagrams of disc-cooling systems 
that are commonly used. In Figure l(a), a turbine disc rotates 
close to a stationary casing, and a radial outflow of air is used 
both to cool the disc and to stop the ingress of hot mainstream 
gas past the seals into the wheel-space. The turbine designer 
needs to be able to calculate the temperature of the disc in 
order to predict its stress, growth and lie. The designer wants 
to know how much air is necessary to seal the system and what 
the effect is of this air flow on heat transfer rates, frictional 
windage and pressure distributions. 

In many applications, the blade-cooling air is supplied through 
pre-swirl nozzles in the stationary casing. These nozzles swirl 
the flow in the direction of the disc rotation so that the 
temperature of the cooling air relative to the blades is reduced. 
The designer needs to know the effectiveness of this pre-swirl 
system and how it affects rim seals, and he should be able to 
estimate the degree of mixing or “contamination” between the 
pre-swirl flow and the disc-cooling air. 

Figure l(b) shows a simplified diagram of the cooling flow 
between corotating turbine discs where air is fed into the system 
near the center and leaves through holes in an outer shroud. 
Again, the designer wishes to predict the heat transfer rates, 
the frictional windage and pressure distributions. The latter is 
of particular importance in the compressor stages where the 
cooling air is sometimes extracted between two corotating 
compressor discs. There is a tendency for free-vortex flow to 
develop as the air Rows radially inward, and the resulting 
pressure drop can cause a sign&ant reduction in the amount 
of coolant that can be bled,off. 

In order to understand the above flows, it is convenient to 
divide them into two categories: rotor-stator systems, as shown 
in Figure l(a), and rotating cavities, as shown in Figure l(b). 
It is simpler to consider plane geometries first, after which the 
effect of practical geometries can be examined. Such rotating- 
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disc research has been carried out over a number of years at 
the Thermo-Fluid Mechanics Research Centre (TFMRC), 
University of Sussex, UK, where recent work has concentrated 
on the problems that are of particular interest to the designer. 
A review of this work is presented below. 

In the following sections, the basic equations and some 
relevant solutions are presented, followed by a discussion of 
the rotating-cavity and rotor-stator systems. 

The basic equations 

The boundary-layer equations 

Many, although by no means all, of the problems of practical 
importance can be described by the boundary-layer equations. 
For incompressible axisymmetric flow in a stationary polar- 
coordinate system, the time-average continuity, momentum and 
energy equations can bc written as 

+s+ 
r 

(4) 
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(a) Cooling flows between a turbine disc and (b) Zoo[ing flow between corotofing turbine discs. 
a stationary casing. 

Figure I Simplified representation of air-cooled gas-turbine discs 
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Inner, outer radius of disc 
Constants /~ (= V,,c/f~r) 
Inlet swirl-fraction 6 
Moment coefficient Apm=, 
Specific heat at constant 
pressure AT (--- C p( Tp - Tb )/ 2~2r 2 ) 
Pressure coefficient 
Nondimensional flow rate t / (=z/J)  
Ekman layer thickness 
Gap ratio 2L (= Cw Re~ t/2) 
Shroud-clearance ratio 2r (= Cw Re~ */s) 
Axial height of fin # 
Thermal conductivity of fluid v (= #/p) 
Constant p 
Frictional moment on one side %, z, 
of disc 
Number of fins on disc ( 4h [C~[~ 1/2 
Local Nusselt number Z=[,Knnh Re,J 
Pressure 
Nondimensional pressure fl 
asymmetry 
Prandtl number 
Heat flux from disc to cooling 
air 
Volumetric flow rate 
Radial coordinate Subscripts 
Recovery factor a 
Radial Reynolds number b 
Rotational Reynolds number 
Axial clearance between one c 
disc and the other disc or stator d 
Shroud clearance e 
Swirl ratio f 
Temperature 1 
Radial, tangential, axial d 
component of velocity in a min 
rotating frame p 
Radial, tangential, axial s 
component of velocity in a 
stationary frame * 

Nondimensional radius 
Axial distance from disc 

Relative rotation of core 
Boundary-layer thickness 
Maximum circumferential 
pressure difference in annulus 
Nondimensional temperature 
difference 
Nondimensional boundary- 
layer thickness 
Laminar-flow parameter 
Turbulent-flow parameter 
Absolute viscosity 
Kinematic viscosity 
Density 
Radial, tangential component 
of shear stress 

Nondimensional flow parameter 

Angular speed of disc 

Refers to conditions at r=a 
Refers to conditions at r = b or 
refers to blade-cooling air 
Refers to conditions in core 
Refers to disc-cooling air 
Edge of source region 
Inner edge of fins 
Refers to conditions at inlet 
Local value 
Minimum value 
Refers to pre-swirl air 
Refers to conditions at surface 
of disc 
Refers to conditions for Cw = 0 

Int. J. Heat and Fluid Flow, Vol. 9, No. 4, December 1988 355 



Air-cooled gas-turbine discs: a review of recent research: J. M. Owen 

The overbars, which signify time-average values of the 
fluctuating components, are used only for the turbulent flux 
terms. In laminar flow these fluctuating components are iden- 
tically zero. 

If separate boundary layers exist on the two discs (one of 
which rotates and the other is either rotating or stationary), 
then the radial pressure gradient can be determined from 

1 dp V~,c 
- (9) 

p dr r 

where the subscript c refers to conditions in the rotating 
core of fluid between the boundary layers. 

The above system of partial differential equations can be 
solved numerically. Alternatively, they can be converted to 
integral equations, and the resulting ordinary differential 
equations can then be solved analytically or numerically. 

If the boundary-layer equations are expressed in a rotating 
coordinate system then it is often possible to obtain a simpler 
linear form referred to as the Ekman-layer equations. 

The Ekman layer equations 

These equations were first derived by Ekman ~ in connection 
with flow in the ocean. If Equations 2 and 3 are expressed 
in a coordinate system rotating at the same angular speed 
fl as the rotating disc, and if the nonlinear inertial terms 
are sufficiently small (which can be shown to be the case 
when the relative speed difference between the fluid core 
and the disc is small), it follows that Coriolis terms dominate 
and 

1 0% 
-2Q(v-v~)  . . . .  (10) 

p dz 

2 ~ =  - - - 1  0%, (11) 
p dz 

where u = V, and v= V,~-f~r are the components of velocity 
referred to the rotating disc. The appropriate boundary 
conditions are 

u=v=O at z=O 
(12) 

u=O, v=vc as z - - * ~  

The resulting boundary layers are usually referred to as 
Ekman layers. 

Exact solutions for laminar flow 

For laminar flow, where the fluctuating terms in Equations 
5 and 6 are zero, Equations 10-12 can be solved to give 

u = -v~e -~m sin z/D (13) 

and 

v = vc(1 - e-=m cos z/D) (14) 

where 

O=(v/f tW z (15) 

The local volumetric flow rate, Qt, in the Ekman layer 
can be found from 

;o Qt = 2nr u dz (16) 

Hence, using Equation 13, 

Q/ 
n Re~/2 ~ x 2 (17) 

vb t ,[r  

Equation 17 can be used in either of two ways: ifQe 
is known, v, can be found; if v, is known, Qt can be determined. 
It should be noted that if re is positive (that is, if the core rotates 
faster than the disc) then Qt is negative and the fluid flows 
radially inward; the converse is also true. 

Approximate solutions for turbulent flow 

For turbulent flow, if the 1/7th power-law profiles are used then 

U = Ult/1/7(1 - -  t/), n~<l 

u=O, ~>1 (18) 
v=vcrl 1/7, ~I<~ 1 

v=vc, ~/>1 

where ul = u 1 (r) and ~1 = z/6, ~ being the Ekman layer thickness. 
The shear stresses are given by the Blasius relationships 

z~'=-O.O225(v~l/'ul(u~- - +v~) 3/2 (19) "~r,s U l 

p v c p \ o /  

where the subscript s refers to the surface of the disc at 
z=0 .  

Integration of Equations 10 and 11 from z=O to oo given 

P 

and (20) 

~ " =  - ~ -~u~  
p 

Hence uJvc= -0.553, 

I v 13/5 
~=0.0983 Re:/S~r r x 3Is (21) 

and 

Qevb_ (sgn v¢)0.140 Re,/slUr 8/5X13/5 (22)  

As for the laminar case, the flow is radially inward if vc 
is positive, and Equation 22 can be used to determine either 
Qe or vc. 

T h e  ro ta t i ng  cav i t y  w i t h  source -s ink  f l o w  

The f low structure 

The flow structure inside rotating cavities with a radial inflow 
(Cw<0) or outflow (Cw>0) of fluid, see Figure 2, has been 
studied in Refs. 2-5. For radial outflow, the flow is assumed 
to enter the cavity uniformly at r=a and to leave through a 
central slot or a series of holes in the shroud at r= b. The 
incoming flow forms a source region near the center, where 
fluid is entrained into the boundary layers on each disc. After 
all the fluid has been entrained, Ekman layers form on the 
discs, and the core of fluid between them rotates at the speed 
necessary to prevent further entrainment. (Strictly, the term 
Ekman layer is applied to boundary layers in which the 
nonlinear terms are negligible. However, it is used here for the 
nonentraining boundary layers outside the source region, even 
if the nonlinear terms are not negligible.) For an isothermal 
or a symmetrically heated cavity, the flow rate is the same in 
each Ekman layer, and there are no radial or axial components 
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of velocity in the core. The sink layer transfers the fluid from 
the Ekman layers to the outlet in the shroud. 

For radial inflow (see Figure 2('o)) the structure is similar but 
the source region and sink layers form near the shroud and the 
center of the cavity, respectively. In the source region, outside 
the boundary layers on the discs, viscous effects are negligible 
and the angular momentum of the incoming fluid is conserved 
such that rV¢.c=constant .  Consequently, if V,.c<f~b at r = b ,  
there will be a radius r' say, where V~., = Dr'. Hence, V,~. c < Dr 
for r '<  r < b, and the flow in the boundary layers in this region 
of the discs will be radially outward; for r < r', where V,.c > Dr, 
this flow in the boundary layers will be radially inward. This 
creates the recirculation in the source region shown in Figure 
2(h). 

The size of the source region can be estimated by assuming 
that it extends to the radius where all the available fluid has 
been entrained. For radial outflow, using the results given 
in Equations 17 and 22, this technique gives 

X e = A21/2 (23) 

for larniuar flow and 

x ,  = B25r/I a (24) 

for turbulent flow, where x~ is the nondimensional radius of 
the source region. For a uniform source, Owen, et al. a gave 
A =0.424 and B= 1.37; for an axial inlet, where the flow enters 
through the center of one disc and impinges on the other, the 
values for the downstream disc are A =0.599 and B= 1.79. For 
radial inflow, the corresponding expressions are 

x. (c 
for laminar flow, and 

x ,  = ( C -  2.2212rlS/Sx3,/s) 1/2 (26) 

for turbulent flow, where C= (V~.dflr) at r = b .  
Figure 3 shows the flow structure with a uniform laminar 

radial outflow for a/b=O.1,  Cw=79 and R%=2.5 x 104 (2L= 
0.500) according to Chew, et al. ° T h e  photograph was taken 
using slit illumination of the r - z  plane with micro-sized oil 
particles injected into the air flow. The computation was carried 
out using an elliptic solver to solve the Navier-Stokes equations. 
It can be seen that the flow resembles that shown in Figure 
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2(a), and Equation 23 gives x¢=0.300 which is in good 
agreement with the actual size of the source region. 

Figure 4 shows a comparison of the flow structure observed 
by Farthing and Owen 7 in cavities either with plane discs or 
with "cobs" (see Figure 1) attached to the center of the discs. 
The flow enters axially through the center of the left-hand disc 
and, for Cw= 1760 and Re÷ffi3 x 105 (2r=0.0731), the flow is 
turbulent throughout the cavity. It can be seen that the flow 
structure is not significantly affected by the cobs, and Equation 
24 with B = 1.79 gives xe =0.654, which is a good approximation 
of the size of the source region. 

For radial inflow, the size of the source region determined 
by Firouzian, et al. 4 was found to be in agreement with 
Equations 25 and 26. 

Veloc i ty  d i s t r i bu t ions  

Pincombe s measured the radial and tangential components of 
velocity inside a number of rotating-disc rigs using laser-doppler 
anemometry (LDA). Predictions of the velocity profiles have 
been made by Chew, et ai., ~ Chew 9 and Morse 1° using 
elliptic-solvers, by Owen, et a l )  and Firouzian, et al. 5 using 
momentum-integral techniques, and by Ong and Owen tt using 
numerical solutions of the boundary-layer equations. 

Outside the source region, where nonentraining Ekman 
layers are formed on the discs, the local volumetric flow rate 
in each layer is Qe =2h2. Equations 17 and 22 can then be used 
to calculate the tangential component of velocity in the core 
such that 

V¢,c_ 1 _ 1  2LX_ 2 (27) 
fir 2~ 

for laminar flow, and 

~--~*~ = 1 - 1 3 / 8  sgn(Cw)2.2212r[51Sx (2S) 1 

for turbulent flow. By equating (27) and (28) it follows that the 
laminar and turbulent velocities are equal when Re,= 180, 
which provides a convenient criterion for the transition from 
laminar to turbulent flow in an Ekman layer. 

Figure 5 shows the variation of v¢.dDr with Cw for radial 
outflow according to Owen, et al. 3 T h e  curves of the linear 
theory correspond to Equations 27 and 28, and the nonlinear 
theory is the numerical solution of the full momentum-integral 
equations. The agreement between the nonlinear theory and 
the experimental data is generally very good, and the linear 
theory provides a good approximation except at the small 
values of V~,.JDr. It can also be seen that transition from laminar 
to turbulent flow does indeed occur at Re,',, 180. 

Figure 6 shows the axial variation of the radial component 
of velocity for radial outflow. The laminar linear solution 
corresponds to Equation 13 and the turbulent linear and 
nonlinear solutions correspond to the numerical solutions of 
the turbulent Ekman layer and boundary-layer equations, 
respectively, according to Ong and Owen; the data were 
obtained by Pincombe. The nonlinear turbulent curves, which 
were based on a mixing-length model of turbulence, are in 
generally good agreement with the data and show the thickening 
of the boundary layer with increasing Cw. 

Morse obtained numerical solutions of the elliptic equations 
for both radial outflow and inflow using a low-Reynolds- 
number k-e turbulence model. Figure 7 shows a comparison 
between the computed and measured values for the radial- 
inflow case for both laminar (Cw=-309)  and turbulent 
(Cw = -946) flow. The swirl fraction C was taken to be 0.59 
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Figure 3 Flow structure for a rotating cavity with a laminar outflow for Re~=2.5 x 10 s and Cw=79 (Ref. 6): (a) computed streamlines 
in the r - z  plane for the half-cavity ~s<~z<<,s, (b) photographed smoke patterns 

for all cases, and it can be seen that the agreement between the 
computed values and the experimental data is very good. 

Pressure d ist r ibut ion for the rad ia l - in f low case 

In a gas-turbine engine, ff the cooling air is extracted radially 
inward between two eorotating compressor discs, the resulting 
radial pressure drop can approach that of a free vortex. This 
may result in the actual flow rate extracted between the discs 
being less than that required for turbine cooling! 

Firouzian, et  al. s obtained a simple expression for the 
pressure distribution inside a rotating cavity using the results 
from the linear Ekman layer equations presented above. The 
pressure gradient was calculated from 

1 dp V.~ 
- (29) 

p dr r 

where in the source region, for x > x e, a free vortex was assumed 
(such that V , , , / f l r =  C x - 2 ) ,  and for x <xe Equations 27 and 28 
were used for laminar and turbulent flow, respectively. From 
these results the pressure coefficient C j, can be calculated from 

Ce = C 2 x(V~,/Dr)2dx (30) 
a 

2 2 5/8 3/8 3/8 =(x , -x , )+23 .712r[  (x, -x=  ) 

+ 7.8912rlS/4(xf s/4 _ x ;  s/,) + C 2 (x~- z _ 1) (31 ) 

for turbulent flow, where x~ is given by Equation 26. 
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Figure 8 shows a comparison between Equation 31, with 
C=0.59 and x= =0.1, and the measurements of Firouzian, et 
aL As the measured pressure drops included "inlet" and "exit" 
losses through the porous shroud and from the center of the 
rig, the results were c o ~  using an approximate empiric~tl 
correlation. Considering the experimental uncertainty and the 
assumptions made in the theory, the agreement is reasonable. 
It should be noted that pressure drops over thirty times those 

(a) (b) 

Figure 4 Flow structure in a rotating cavity with a turbulent 
outf low for R e , = 3 x l 0  = and C , = 1 7 6 0  (Ref. 7): (a) plane-disc 
case, (b) disc wi th cobs 
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Figure 5 The variation of V,.JC~r with C,  for a rotating cavity wi th 
a radial outflow. - - -  linear theory; nonlinear theory. Experimental 
data: • Re, = 1 O=; I I  Re, = 2 x 1 (P; • Re, = 4 x 10 =. Hol low symbols 
are in the source region (Ref. 3) 
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Figure 7 The radial variation of V,.J~lr for a rotating cavity wi th a 
radial inflow. - -  numerical solution (Ref. 10). Experimental data 
(Ref. 8): L~ C . =  - 3 0 9 ,  Re ,=4  x 10=; 0 C . =  - 3 0 9 ,  Re ,=6  x 10=; 
• C.  = - 946, Re, = 4 x 10~; • C., = - 946. Re, = 6 x 10 = 
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Figure 8 The variation of Cp with Re+ for a rotating cavity with a 
radial inflow (Ref. 5 ) .  - -  equation (31) (C=0.59, x,=0.1). 
Experimental data: x C,=0; • C ,= -950 ;  ~ C,=-1450;  . 
C+=-2750; • Cw=-7000. (Hollow symbols are uncorrected 
data.) 

associated with solid-body rotation were measured and 
predicted. 

Chew and Snell lz obtained solutions of the momentum- 
integral equations and predicted the pressure distribution at 
engine conditions. In addition, Chew, et al. 13 carried out a 
combined theoretical and experimental investigation of the 
effect of adding radial fins to one of the discs in the rotating 
cavity. Figure 9 shows a simplified diagram of the experimental 
rig, where the outer radius of the cavity was b f 3 8 1 m m ,  and 
60 radial fins were attached to one disc from a radius of 
r = rf  = 168 mm to r = b. The fins had an axial height ofh = 10 mm, 
and the axial clearance between the edge of the fins and the 
plane disc was 87 ram. Ten radial vanes, extending axially across 
the cavity between two central "cobs," were located from the 
center at r = a = 3 8 m m  to the start of the fins at r=r f .  The 
vanes ensured that solid-body rotation occurred for x, < x < xf ,  
where x°=a/b=0.1 and xy'=r:/b=0.441. The holes in the 
perforated shroud were covered with foam plastic to ensure 
that the air entered the cavity with solid-body rotation (that is, 
the swirl fraction, C, was unity). 

As well as solving the nonlinear momentum-integral equations, 
using a rib-roughness model for the resistance of the fins, Chew, 
et al. also obtained a simple solution of the linear Ekman layer 
equations. The linear theory gives 

C , =  (x~-2-1 )+ (x~-x2 , )+4X(x+-x f )+2Z 2 ln(yX--~) (32) 
\ ~ - ] /  

where 

[ 4b Icwl~ 1/z 
l = ~-~nh ~-e-~e¢) (33) 

and 

Xe = ½E(Z 2 -I- 4) I/2 - Z'l (34) 

K, n and h being, respectively, an empirical constant (of order 
unity), the number, and the axial height of the radial fins. 

Figure 10 shows the variation o fCp  with ICwl/Re+ for the 
finned-disc cavity. The "nonlinear theory" indicates solutions 
of the momentum-integral equations, and the "linear theory" 
refers to Equation 32. It can be seen that a value of K ffi 2 gives 
a good fit to the experimental data which, like those of  
Firouzian, et aL, were corrected for inlet and exit losses. 
Without the fins, pressure drops of over thirty times those 
associated with solid-body rotation were measured. 

De-swirl nozzles have been used to reduce the pressure drop 
in a rotating cavity, and the results of these tests will be reported 
in the near future. 

Heat transfer for the rad ia l -ou t f l ow  case 

Heat-transfer measurements have been made in rigs with a 
variety of inlet conditions, disc geometries, and radial tempera- 

mr inlet 

r=b 

f ins 

r=r f  

o i r  
outlet - - - - -  .central drive 

. ~ f "  shaft I 

Figure 9 Simplified diagram ofthefinned-disc rotating-cavityrig 
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Figure 10 The variation of Cp with IC, I/Re~ for the finned-disc 
cavity with radial inflow (Ref. 13). - -  nonlinear theory; - - - -  
linear theory, K =  1;  . . . .  linear theory, K = 2; [ ]  experimental data 
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ture profiles by Long and Owen 14.15, Farthing and Owen 7 and 
Northrop and OwenJ 6 

In the experiments of Northrop and Owen, the temperature 
distributions on the discs could be varied by means of built-in 
electric heaters. The local Nusselt numbers, Nu, were found to 
depend significantly on the temperature distribution as well as 
on the coolant flow rate and rotational speed of the cavity. It 
was also found (for all the heat-transfer measurements referred 
to above) that the Nusselt number reached a maximum value 
at a radial location corresponding to the approximate edge of 
the source region. Inside the source region, where the boundary 
layers entrain fluid, the Nusselt number increased with radius; 
outside this region, where nonentraining Ekman layers form, 
Nu decreased with increasing radius. For the case where the 
temperature of the disc decreased with increasing radius, the 
Nusselt numbers could become negative: heat was transferred 
from the "cooling" air to the disc despite the fact that the 
temperature of the disc was higher than that of the air entering 
the cavity. 

Predictions of the local Nusselt numbers have been made by 
Chew and Rogers 17 (using solutions of the integral equations) 
and by Ong and Owen 18 (using solutions of the differential 
boundary layer equations). As long as the rotational speed was 
high enough to ensure that the source region did not fill the 
entire cavity, the predicted values of Nu were found to be in 
good agreement with the measurements of Northrop and Owen. 

R o t o r - s t a t o r  s y s t e m s  

The basic f lu id  dynamics 

A simplified representation of a rotor-stator system with a 
superimposed radial outflow of fluid is shown in Figure 11. 
Fluid enters the system at r = a and leaves at r =  b through a 
clearance between the rotor and the peripheral shroud. At 
sufficiently high rotational speeds, separate boundary layers 
form with flow radially outwards on the rotor and inwards on 
the stator. Between the boundary layer is an inviscid core of 
rotating fluid in which the radial component of velocity is zero. 
Ingress occurs when the superimposed flow is unable to prevent 
external fluid from entering the system through the clearance 
between the rotor and the shroud. 

The isothermal system, without and with a superimposed 
outflow, has been studied by Daffy and Nece 19 and Daily, 
et al. 2° Owen, et al. 21 carried out a combined numerical and 
experimental study of heat transfer in a system with relatively 
large flow rates. Chew and Vaughan 22 obtained solutions of 
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the elliptic equations using mixing-length models for the 
turbulent stresses, and their results showed good agreement 
with the data of Daily, et ai. 

Owen 23 used the Ekman layer equations to obtain approxi- 
mate solutions for the flow over the rotating and stationary 
discs. By matching an analytical solution of the turbulent 
momentum-integral equations for the rotor to the linear Ekman 
layer solution for the stator, the following expression was 
obtained for the tangential component of velocity in the core: 

(1 -/~)s/s (1 - 0.5 lp) - 0.638p 4/s = 4.572rx- 13/5 (35) 

where /~= F,.c/f~r. For no superimposed flow, where 2r f 0 ,  
/~=~* =0.426, which is in good agreement with the data of 
Daily and Nece. 

Daffy, et al. correlated their velocity measurements by 

/~//~* = (12.72rx- 13/s + 1)- 1 (36) 

and Equations 35 and 36 are shown in Figure 12 together with 
the computations of Vaughan and the LDA measurements of 
EI-Oun and Pincombe (see Vaughan2*). Vaughan's compu- 
tations are in good agreement with the experimental data, and 
Equation 36 provides a reasonable correlation; Equation 35 
tends to underestimate the core rotation at the larger values 
of 2T" 

For turbulent flow with 2r<0.219, Owen's approximate 
solution gives 

C,, Re~/5 = 0.0729x 23/5 + 0.0398{(1 - x~ 3Is) 

+ 14.72r(1 -x2)  + 90.422(1 - x;- 3/5)} (37) 

where C= is the moment coefficient and 

xe = 1.792~-/13 (38) 

For 2r=0,  Cm=C~=O.O398Re~ , l /5 ;  for 2r=0.219, C== 
0.0729 Re~ 1/2, which is identical to yon Karman's 2s solution 
for a free disc. It should be noted that 2r=0.219 implies that 

Cw=0.219 Re~/5 (39) 

which is equal to the flow rate entrained by a free disc. For 
2r<0.06, Equation 37 is in good agreement with the compu- 
tations of Vaughan and with the empirical correlations of Daily, 
et al. For larger values of 2r, the computations of Chew and 
Vaughan for a rotor-stator system with a radial inlet show that 
Cm reaches a constant value, slightly less than the free-disc case, 

- I   :ii L 
0"2 " ~  l i~  

0 I I I I I"%. I 

006 ff08 0"12 0-16 0"20  0"2~ XTX-13/$ 
Figure 12 The variation of the relative rotation of the core in a 
rotor-stator system with radial outflow. - -  equation 35; - - -  
equation 36; O experimental data of EI-Oun and Pincombe; • 
numerical data of Vaughan (Ref. 24) 
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when ),r>~0.22; for the axial-inlet case, C,, can exceed the 
•e-disc value. 

Seal ing rotor-s tator  systems 

As discussed above, in a rotor-stator system the core of f luid 
between the boundary layers rotates with an angular speed that 
is attenuated by increasing flow rate. This rotation creates a 
radal pressure gradient, and the pressure in the "wheel-space" 
between the two discs increases with radius. If there is a small 
clearance between the shroud and the rotor, as shown in Figure 
11, then some of the fluid in the rotor boundary layer is 
"pumped" out of the system. When there is no, or little, 
superimposed flow, the outflow is compensated by an inflow 
of external fluid, referred to as ingress. As the superimposed 
flow is increased, the pressure drop across the shroud causes 
the system to be pressurized, and the ingress can be prevented. 

Baytey and Owen 26 studied a system with an axial-clearance 
seal, as shown in Figure 11, for the case where the axial 
clearance, So, was small. Assuming viscous effects were negligible, 
they showed the minimum nondimensional flow rate necessary 
to prevent ingress, Cw.,~l,, should be given by 

C~.m~, = g Gc Re~ (40) 

where K is an empirical constant. For G=0.06, 0.12 and 0.18, 
Gc=0.0033 and 0.0067, and Re~<~4xl06, they conducted 
experiments to determine Cw.,,~. by measuring the pressure drop 
across the shroud and found that a value of K = 0.61 correlated 
their data. 

In a more comprehensive experimental study, Phadke and 
Owen 2 7 investigated the sealing characteristics of seven different 
geometries, including seals with radial clearances. Pressure and 
gas concentration measurements were made to determine 
Cw,=i. for G=0.1, 0.0025~<G.~<0.04 and Re¢~<l.2 x 106. All 
three techniques yielded qualitatively similar results, and C..m~. 
was correlated by an expression of the form 

Cw,min m KG~ Re~ (41) 

where K, m and n are empirical constants that depend on the 
seal and the ingress criterion used. 

With axial-clearance seals, the pressure inside the wheel-space 
decreases with increasing rotational speed. However, with the 
radial-clearance seals, the pressure could increase with rotational 
speed. This increase was termed the "pressure-inversion effect" 
and is believed to be caused by the flow on the rotor impinging 
on the stationary shroud, or on the stator, thereby forming a 
curtain of fluid that seals the system. As a consequence, the 
radial-clearance seals tended to be more effective than the 
others. 

The above tests were all carried out in a rig in which the 
external fluid was stationary. In an engine, the mainstream gas 
flows axially across the outside of the seals, and may be swirling 
and nonaxisymmetric because of the upstream nozzle guide 
vanes and combustion chambers. Abe, et al. zs obtained results 
to suggest that, with an external flow of air, the sealing flow 
rate Cw,m~, was virtually independent of rotational speed. 

A separate series of experiments was carried out by Phadke 
a n d  O w e n  29 for a rotor-starer system with an external flow of 
air. The rig was surrounded by a stationary cylindrical enclosure 
which created an annulus and air flowed axially through the 
annulus, from the starer towards the rotor. It was not possible 
to achieve perfectly axisymmetric external flow, and it was 
found that ingress could occur even when the rotor was 
stationary: fluid moved laterally across the wheel-space from 
high-pressure to low-pressure regions in the annulus. 

At low values of Re. (the external-flow Reynolds number), 
Cw,m~. was proportional to Re¢. At high values of Re~, C.,m~. 

became independent of Re, and became proportional to Re,,. 
This effect is shown in Figure 13 for an axial-clearance seal 
with Go=0.02. It is interesting to observe that, for the smaller 
values of Re,,, Cw.mi, can actually decrease ~vith increasing Re~,. 

The numerical solutions of Vaughan =4 throw light on the 
sealing behavior illustrated in Figure 13. For computations 
with G=0.I ,  Go=0.01, Cw= 103, R%=8 x 10 s and 0<~Rew<~ 
6 x 10 s, the streamlines show that, for axisymmetric flow, fluid 
ingested into the wheel-space from the external flow tends to 
separate from the shroud. The resulting separation bubble 
decreases the effective clearance between the shroud and the 
rotor, thereby reducing the amount of sealing air required to 
prevent ingress. The separation bubble grows in size with 
increasing Rew suggesting that Cw.mi. should decrease with 
increasing Rew. 

Under nonaxisymmetric conditions, external flow can impinge 
on the rotor at some circumferential locations, and this results 
in radial inflow at these locations and outflow at others. Thus, 
for nonaxisymmetric flow, C~,mi. increases with increasing Rew. 
There is, therefore, a minimum value of C,~,=l. at the point 
where the nonaxisymmetric impingement is balanced by the 
axisymmetric sealing effect of the external flow. Vaughan's 
potential-flow solutions for the nonaxisymmetric case show that 
the sealing flow rate is proportional to the external axial 
velocity, a result that is consistent with the experimental 
evidence. 

For nonaxisymmetric flow, ingress is affected by the circum- 
ferential pressure distribution in the external-flow annulus, and 
Phadke and Owen 3° carried out tests in which the pressure 
symmetry could be varied independently of Rew. They were 
able to show that circumferential pressure differences, rather 
than Re~ itself, affected Cw,=~., Using a simple inviscid model, 
they obtained a correlation for the stationary-disc ease expressing 
C,~,m~, in terms of Ap,,x, the difference between the maximum 
and minimum static pressures in the external-flow annulus, such 
that 

C~v,min = 2rtKGcP~m/~x (42) 

where K is an empirical constant and 

Pma,, = P Apm.b2 /#  2 (43) 

A value of K = 0.6 was found to correlate most of their data 
with reasonable accuracy. 

Phadke and Owen tentatively suggested that Equation 41, 
for Re, = 0, and Equation 43, for Re¢ =0, could be used as 
asymptotes to provide an estimate of Cw,r,l,. The larger of the 

-3 
10 Cw. rain 

1S 

d 

10, 

0'4 06 08 1.0 1.2 
Rew/106 

Figure 13 The effect Ree on the variation of Cw.m~ . with Rew on a 
rotor-stator rig (Ref. 29) 
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values of C~.~n obtained from these two equations should 
provide a conservative estimate. 

EI-Oun, et al. 3~ made measuier~ents, without external flow, 
in an isothermal rig that was sealed using both a radial outflow 
of "disc-cooling" air and pre-swirled "blade-cooling" air (as 
shown in Figure l(a)). The disc-cooling air was supplied 
through a hole in the center of the stator, and the pre-swirl air 
was introduced through 60 nozzles, inclined at an angle of 20 ° 
to the tangential direction, located near the outside of the stator. 
Air left the system through the clearance between the shroud 
and rotor and also through a series of 60 holes in the outer 
part of the rotor; the latter represented the blade-cooling 
feed-holes in an air-cooled turbine disc. 

The authors used flow visualization, pressure and concen- 
tration measurements to determine C~.,~, for G~=0.0072 and 
for Re, up to 1.8 x 10 e. It was found that the value of C~,m~, 
obtained with only disc-cooling air was virtually the same as 
that with only pre-swirl air: C~.m~, was independent of where 
the flow was fed into the system. However, when flow was 
extracted through the blade-cooling holes in the rotor, Cw.m~. 
was increased; this increase was attenuated if the disc-cooling 
and pre-swirl flows were used simultaneously. Gas-concentration 
measurements also showed that the blade-cooling air could be 
severely contaminated with the disc coolant, and under some 
conditions all the disc-cooling air could be entrained into the 
blade-cooling holes. 

Ways of reducing the contamination of blade-cooling air with 
disc coolant are being investigated, and the results will be 
published in the future. 

Pre-swir l  b lade-cool ing effectiveness 

As discussed above, one method of introducing blade-cooling 
air into a rotor-stator wheel-space is by the use of pre-swirl 
nozzles in the stator. By swirling the air in the direction of 
rotation, its temperature relative to the rotor is reduced. As 
the pre-swirl air can mix with the disc coolant, the problem is 
further complicated if ingress of hot mainstream gas occurs. 

Meierhofer and Franklin 32 determined the effectiveness of a 
pre-swirl system by measuring the temperature of the air in the 
nozzles and in the rotating channels that feed the coolant to 
the turbine blades of an actual engine. They obtained a 
correlation of the effectiveness as a function of the ratio of 
disc speed to that of the effective pre-swirl velocity at the 
rotor plane, the latter being determined from temperature 
measurements. 

EI-Oun and Owen 33 developed a simple theoretical model to 
determine, AT, the nondimensional temperature drop between 
nozzles and the blade holes defined as 

A T _ C p ( T . -  T~) (44) 

where Tp and T~ are the total temperatures of the cooling air 
referred to the stator and the rotor, respectively, and r b is the 
radial location of the blade-cooling holes. Using the Reynolds 
analogy, they showed that for an adiabatic system without 
mixing of the pre-swirl and disc-cooling flows 

AT=$2,-R(1 -S,)  2 (45) 

where S, is the swirl ratio (or ratio of the tangential component 
of velocity of the pre-swirl flow to the angular speed of the disc 
at r--  rb) and R is the recovery factor, which for air was assumed 
to be equal to Pr 1/3. For radial outflow, where mixing occurred 
between the pre-swirl and disc-cooling flows, the authors used 
the conservation of angular momentum to calculate the effective 
swirl ratio, and they used the steady-flow energy equation to 
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estimate the increase of enthaipy of the disc-cooling air due to 
frictional heating. 

The apparatus was essentially the same as that used by 
E1-Oun, et al., 31 which is described above. As the maximum 
speed of the rotor was 5400 rev/min and the radial location of 
the blade-cooling holes was 0.19 m, the dynamic temperatures 
were small. Although the error in the measured temperature 
difference between the pre-swirl and blade-cooling air was 
estimated to be less than +0.3°C, there could be large relative 
errors in A T at the lower rotational speeds (that is, at the higher 
values of S,). Despite this, the agreement between theory and 
experiment was good, as illustrated in Figure 14 which shows 
the variation of AT with S, for various values of Cw.~, Cw,d and 
Cw.p, the nondimensionai blade-cooling, disc-cooling, and pre- 
swirl flow rates, respectively. For unmixed flows, the theory 
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Figure 14 The variation of AT with 5, for a rotor-stator rig with 
pre-swirl and disc-cooling flow (Rq~.. 33). theory for mixed 
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corresponds to Equation 45; for mixed flows, Equation 45 
is modified as outlined above. It can be seen that, with few 
exceptions, the measurements are in very good agreement with 
the theory for mixed flow. 

The authors also conducted experiments in which the disc- 
cooling air was supplied radially inward from the pre-swirl 
nozzles. For  radial inflow, if S, > 1 then the flow can be radially 
inward on the rotor as well as on the stator. When this occurs, 
the frictional moment on the rotor is reversed (that is, power 
is put into the rotor) and the blade-cooling air is no longer 
contaminated with disc-coolant. The measured values of AT 
for radial inflow were found to be in good agreement with the 
unmixed theory, Equation 45. 

Concluding remarks 

Since the 1984 review given in Ref. 34, considerable progress 
has been made in understanding the flow and heat transfer that 
occurs in a variety of rotating-disc systems. The rotating cavity 
with a radial inflow or outflow of fluid, which is used to model 
the flow between corotating compressor or turbine discs, is now 
well understood. Predictions of the flow and heat transfer in 
rotating cavities are in good agreement with the available 
experimental data, and it is possible to predict, with reason- 
able accuracy, the important fluid-dynamic and heat-transfer 
performance at engine conditions. 

The rotor-stator system with a superimposed radial outflow 
of fluid, which is used to model the flow between a turbine disc 
and an adjacent stationary casing, has also been extensively 
studied. The fluid dynamics of these systems can be predicted 
accurately by both elliptic and boundary-layer equations, but 
the amount of heat-transfer data relevant to gas-turbine design 
is still limited. Particular attention has been paid to the 'ingress 
problem': the determination of the minimum amount of cooling 
air necessary to prevent the ingestion of hot mainstream gas 
into the wheel-space of a rotor-stator system. The effect of seal 
geometry, rotational speed, external flow and pre-swirl flow on 
the sealing performance has been studied experimentally, but 
further work is still necessary. In particular, as ingress can be 
caused by a nonaxisymmetric pressure distribution in the 
external mainstream flow in a gas turbine, it will be necessary 
to use three-dimensional elliptic solvers to predict accurately 
the sealing performance under realistic engine conditions. What 
happens to ingested hot gas when it enters the wheel-space is 
also a problem where further work is required. 

One case that has not been included in this review is that of 
the rotating cavity with an axial throughflow of air. This 
problem occurs when cooling air passes through the centers of 
hot corotating compressor discs, and some of the air is ingested 
into the "trapped" cavities between the discs. The ingestion is 
triggered by vortex breakdown of the central jet of fluid, and 
the resulting buoyancy-driven flow is three-dimensional and 
unsteady. It is difficult to obtain reliable data of relevance to 
the designer, but it is hoped that some results will be published 
in the near future. 
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